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We study the effects of particle size dispersion on the absorption spectrum of nonfractal random gas of
particles and fractal cluster-cluster aggregates. We use the coupled-dipole equations to describe the interaction
of particles with the external electromagnetic wave. We express the absorption in terms of the spectral variable
introduced by Bergman �Phys. Rev. B 19, 2359 �1979��. In the case of nonfractal clusters, the particle size
dispersion has no influence on the overall shape of the spectrum. In the case of fractal clusters, the bandwidth
of the spectrum decreases as the particle size dispersion increases. Moreover, the maxima and minima of the
spectrum vary, shift, and even disappear, as the particle size dispersion increases.
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I. INTRODUCTION

Many processes of aggregation of small particles lead to
the formation of fractal clusters. Fractal carbonaceous soot
formed in hydrocarbon fuel burning, metallic �especially sil-
ver, gold, or platinum� colloidal clusters, self-affine thin
films, and metal-dielectric composites near percolation
threshold are a few examples. Due to their fractal structure,
these materials exhibit a plethora of intriguing optical
properties.1–4 Inhomogeneous localization of electromag-
netic eigenmodes and strong enhancement of local fields,5

giant enhancement of nonlinear optical responses,6–9 and
femtosecond dynamics of local excitations,10 have been thor-
oughly studied. Experiments have proven a 106 enhancement
of the degenerate four-wave mixing in fractal silver
clusters.6,11 Another fascinating experiment has shown a 105

enhancement of two-photon absorption for dyes adsorbed on
silver nanoparticle fractal aggregates.12 It has also been
shown than intense laser pulses induce wavelength- and
polarization-selective spectral holes in the absorption spectra
of fractal aggregates of colloidal particles.13–15

In the realm of optics of fractal clusters, the cluster-cluster
aggregation �CCA� model16 has gained much
attention.4,10,17–20 A CCA aggregate consists of N identical
polarizable spherical nanoparticles. Most studies are based
on the dipole approximation. In this approximation, each
sphere of radius R is represented as a point dipole with po-
larizability �=R3��−�h� / ��+2�h�, where � and �h are the
dielectric constants of the sphere and host medium, respec-
tively. The local field acting on any dipole is a superposition
of the incident field and secondary fields produced by other
dipoles. Coupled-dipole equations can be solved to find the
dipole moments. Measurable quantities, e.g., the absorption
cross-section of the aggregate, can be expressed in terms of
the dipole moments. Linear optical properties of monodis-
perse fractal clusters are studied in great detail by Markel et
al.17

There are many good reasons to investigate the effects of
particle size polydispersity on the optical properties of fractal
clusters. �i� Polydisperse fractal clusters are abundant. For
example, Xiong and Friedlander21 found that particles in
fractal atmospheric aggregates ranged in size from 6 to 100
nm. �ii� The polarizability of a dielectric sphere of radius R is
proportional to R3. �iii� A system composed of one sphere of

radius R1, and one sphere of radius R2, is the simplest poly-
disperse cluster. Even in such a simple system, certain dipole
oscillations cannot be excited when R1=R2.22 Indeed, the
absorption cross-section of dimer can be written as

�a = �̃p�R1
3/2 + R2

3/2�2k + �̃m�R1
3/2 − R2

3/2�2k , �1�

where �=2� /k is the wavelength of the exciting electromag-
netic field. Here the dimensionless factors �̃p and �̃m depend
on the direction of field, the dielectric constants of monomer
and host medium, and the distance between two monomers,
see Sec. III. In a rough approximation, a cluster can be
viewed as an aggregate of dimers. Thus, absorption cross-
section of a cluster is expected to be influenced by the par-
ticle size polydispersity. �iv� In 1996, Mirkin et al.23 intro-
duced an intriguing DNA-based method for rationally
assembling nanoparticles into macroscopic materials. Using
8 and 31 nm gold nanoparticles, they reported preparing ma-
terials from building blocks of different sizes.24 Now it is
possible to tailor the optical, electronic, and structural prop-
erties of the colloidal aggregates by using the specificity of
DNA interactions to direct the interactions between particles
of different size and composition.25

Karpov et al.26 have studied polydisperse aggregates with
N�50. However, numerical studies17 indicate that the fractal
structure of an aggregate manifests if N�1000. Perminov et
al.22 introduced an elegant change in variables, which greatly
simplifies the coupled-dipole equations for a polydisperse
aggregate. They studied ordered arrangements of particles: a
dimer, a linear aggregate of N particles, a “seven-leafed ro-
sette,” etc. In this paper, we study optical properties of bid-
isperse and polydisperse CCA fractal clusters with N=1000
monomers. We find that the particle size dispersion has a
deep influence on the bandwidth of the absorption spectrum.
The maxima and minima of the spectrum vary, shift, and
even disappear, as the particle size dispersion increases.

Our paper is organized as follows. In Sec. II we present
coupled-dipole equations for polydisperse clusters. The in-
fluence of size dispersion on the optical response of a dimer
is discussed in Sec. III. The absorption spectrum of random
gas of particles and cluster-cluster aggregates are presented
in Sec. IV. Finally, Sec. V contains a summary of our results.
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II. COUPLED-DIPOLE EQUATIONS FOR POLYDISPRSE
CLUSTERS

We consider the interaction of a plane electromagnetic
wave with a polydisperse fractal cluster of N spherical par-
ticles. We focus on the quasistatic limit, where the total size
of the cluster is much less than the light wavelength �, and
the external electric field E0 exp�−i�t� is the same at each
monomer. We denote the position, radius, polarizability, and
light-induced dipole of the ith monomer by ri, Ri, �i, and
di exp�−i�t�, respectively. The local field acting on any di-
pole is a superposition of the incident field and all secondary
fields produced by the other dipoles. Thus the coupled-dipole
equations �CDEs� for the induced dipoles are

di = �i�E0 + �
j=1

N

W�ri − r j�d j� , �2�

where the interaction tensor W�ri−r j� is

W�,	�ri − r j� =
3�ri − r j���ri − r j�	

�ri − r j�5
−


�	

�ri − r j�3
�3�

for i� j, and W�,	�ri−r j�=0 for i= j. Here the Greek sub-
scripts denote the Cartesian components. The polarizability
of the ith monomer is given by the Lorentz-Lorenz equation

�i = Ri
3 ���� − �h���
���� + 2�h���

, �4�

where ����=�����+ i����� and �h are the bulk dielectric
permittivity of the sphere and host medium, respectively. The
frequency dependence of CDE enters only through �i���.
For monodisperse clusters with arbitrary form of polarizabil-
ity, Markel et al.27 emphasized the advantages of expressing
the solutions of CDE in terms of X and 
 which are defined
by �−1=−X− i
.

Following Perminov et al.,22 we introduce

di
˜ = diRi

−3/2,

�i˜ = �iRi
−3,

X̃ = XiRi
3 = − Re	���� + 2�h���

���� − �h��� 
 ,


̃ = 
iRi
3 = − Im	���� + 2�h���

���� − �h��� 
 ,

Z̃ = − X̃ − i
̃ ,

rij˜ = �ri − r j�/�RiRj . �5�

X̃ and 
̃ are independent of the radii of spheres. Thus, the
absorption cross-section of a polydisperse cluster can be

studied as a function of the spectral variable X̃. 
̃ character-

izes the dissipation of cluster. Note that Z̃ is simply related to
the Bergman-Milton28 spectral variable s=�h / ��−�h�. CDE
assumes a simple form in terms of the scaled variables

Z̃di
˜ = Ri

3/2E0 + �
j=1

N

W�rij˜�d j
˜. �6�

This is a system of 6N linear equations to be solved for di
R̃

=Re�di
˜� and di

Ĩ = Im�di
˜�.

Numerical simulation of CDE for monodisperse fractal
clusters show that both scaling theory and mean-field theory
fail. This is due to inhomogeneous localization of optical
eigenmodes, and associated strong field fluctuations.1–5,17

Therefore, in our study of polydisperse clusters, we focus on
the numerical solution of CDE.

In our first approach, we recast the real and imaginary
parts of the coupled-dipole Eq. �6�

�W̃2 + 2X̃W̃ + �X̃2 + 
̃2�I�dĨ = E0, �7�

dR̃ = − 
̃−1�W̃ + X̃I�dĨ , �8�

where dR̃= �d1
R̃ ,d2

R̃ , . . . ,dN
R̃�t, dĨ = �d1

Ĩ ,d2
Ĩ , . . . ,dN

Ĩ �t, E0

= �
̃R1
3/2E0 , 
̃R2

3/2E0 , . . . , 
̃RN
3/2E0�t, I is the unity matrix, and t

denotes the transpose of a matrix. We use the conjugate-
gradient method29 to solve the above set of 3N linear equa-

tions for dĨ, and then obtain dR̃ by a simple matrix-vector
multiplication.

Expressing the coupled-dipole equations in terms of the
scaled dipoles allows one to follow the approach of Refs. 17,
22, 30, and 31. The matrix W�rij˜� is symmetric and com-

mutes with the matrix Z̃I. Thus one can solve Eq. �6� via

decomposing di
˜ over the eigenvectors of W�rij˜�. We found

good agreement between two numerical methods.
Now we extend Ref. 30 and express the absorption cross-

section of a polydisperse cluster in terms of the dipole mo-
ments: �a= �4�k / �E0�2��i=1

N �di�2
i. The scaled dipoles can be
directly used to access the absorption cross-section

�a =
4�k
̃

�E0�2 �
i=1

N

�di
˜�2 =

4�k
̃

�E0�2
�dR̃

2
+ dĨ

2
� . �9�

The scattering cross-section is zero in the quasistatic limit.

III. DIMER

It is instructive to consider the simplest polydisperse clus-
ter. We assume that a sphere of radius R1 resides at point
�0,0,0�, and a sphere of radius R2 resides at point �0,0 ,L�.
Introducing dp

˜=d1
˜+d2

˜, dm
˜=d1

˜−d2
˜, and E0= �E0x ,E0y ,E0z�,

the coupled-dipole equations can be written as

Z̃dp
˜ = �R1

3/2 + R2
3/2�E0 −

R1
3/2R2

3/2

L3 diag�1,1,− 2�dp
˜,

Z̃dm
˜ = �R1

3/2 − R2
3/2�E0 +

R1
3/2R2

3/2

L3 diag�1,1,− 2�dm
˜,

which are easily solvable. The absorption cross-section �a

=2�k
̃��dp
˜�2+ �dm

˜�2� / �E0�2 is already presented in Eq. �1�. Ap-
parently
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�̃p =
�E0x

2 + E0y
2 �

�E0�2
2�
̃

	X̃ −
R1

3/2R2
3/2

L3 
2

+ 
̃2

+
E0z

2

�E0�2
2�
̃

	X̃ +
2R1

3/2R2
3/2

L3 
2

+ 
̃2

, �10�

�̃m =
�E0x

2 + E0y
2 �

�E0�2
2�
̃

	X̃ +
R1

3/2R2
3/2

L3 
2

+ 
̃2

+
E0z

2

�E0�2
2�
̃

	X̃ −
2R1

3/2R2
3/2

L3 
2

+ 
̃2

, �11�

determine the frequency dependence of �a.
The absorption cross-section gains it maximum at fre-

quencies where X̃= �R1
3/2R2

3/2 /L3 or �2R1
3/2R2

3/2 /L3. Quite

remarkably, the resonances at X̃=−R1
3/2R2

3/2 /L3 and
2R1

3/2R2
3/2 /L3 are absent in the absorption cross-section �a

= �̃p�R1
3/2+R2

3/2�2k+ �̃m�R1
3/2−R2

3/2�2k if R1=R2. This mani-
fests the influence of size polydispersity on the optical
response.22

IV. CLUSTERS WITH 1000 MONOMERS

To compare optical properties of nonfractal and fractal
clusters, we produced ten samples of the random gas of par-
ticles �RGP�, and 20 samples of the CCA. The number of
monomers in each sample was N=1000. Our CCAs were
built on a 440a�440a�440a cubic lattice with periodic
boundary conditions. The lattice constant a was chosen as
the unit of length. Off-lattice RGP was produced in a sphere
with the same volume of CCA. Monomers in RGP and CCA
fill the same volume fraction �0.05.

To investigate the effect of size distribution on the optical
response, we first studied bidisperse clusters where N1 mono-
mers have radius R1 and polarizability �1, while N2=N−N1
monomers have radius R2 and polarizability �2
=�1�R2 /R1�3. The absorption cross-section of a bidisperse
cluster is measured in units of 4�kRe

3, where the effective
radius Re is defined as Re= �N1R1

3 /N+N2R2
3 /N�1/3. We also

studied polydisperse clusters whose monomer radius has a
uniform distribution in the interval �Rmin,Rmax�. Here

Re = 	

Rmin

Rmax R3

Rmax − Rmin
dR
1/3

serves as the effective radius. In this model, the distribution
of polarizability in the interval ��min,�max� is f���
=�−2/3 / �3�max

1/3 −3�min
1/3 �.

The results of simulations were averaged over three dif-
ferent orientations of the incident field for each cluster, and
finally averaged over 10 �20� realizations of the RGP �CCA�
clusters. We reproduced the results of Ref. 17 for monodis-

perse RGP and CCA, which serves as a partial test of our
program.

A. Random gas of particles

Figure 1�a� delineates �a as a function of X̃ for monodis-
perse random gas of particles with N1=1000, R1=4a /8, and


̃=0.0125. The absorption spectrum has one clear maximum

at X̃=0. Moreover, the spectrum is nearly symmetric. The

absorption is considerable in the range −0.4
 X̃
0.4.
Now we consider a bidisperse RGP with N1 monomers of

radius R1=4a /8, N2 monomers of radius R2=2a /8, N=N1

+N2=1000 and 
̃=0.0125. Figure 2 shows �a for clusters
with N2� �N /8,2N /8,4N /8,6N /8�. We find that indepen-
dently of bidispersity, �a is nearly symmetric and gains its

maximum at X̃=0. The increase in bidispersity has not a
profound effect on the maximum of the normalized absorp-
tion cross-section. For N2=N /8 and 6N /8, the maxima of
�a / �4�kRe

3� are 16.65 and 14.72, respectively.
As another example, we consider a bidisperse RGP with

N1=N2=N /2, R1=4a /8, and 
̃=0.0125. Figure 3 shows �a
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FIG. 1. �Color online� �a� The absorption cross-section �a �in
units of 4�ka3� as a function of dimensionless X̃ for monodisperse

random gas of particles with N1=1000, R1=4a /8, and 
̃=0.0125.
�b� The absorption cross-section for monodisperse CCA with the
same parameters.
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FIG. 2. �Color online� �a �in units of 4�kRe
3� as a function of

dimensionless X̃ for bidisperse random gas of particles with N1

monomers of radius R1=4a /8 and N2 monomers of radius R2

=2a /8. N=N1+N2=1000 and 
̃=0.0125.
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for various R2. This figure shows again that independently of
bidispersity, �a is nearly symmetric and gains its maximum

at X̃=0.
To go beyond the bidisperse clusters, we consider a uni-

form distribution of monomer radius in the interval
�Rmin,Rmax=4a /8�. Figure 4 shows that the absorption spec-

trum has one clear maximum at X̃=0.

B. Cluster-cluster aggregates

Figure 1�b� delineates �a as a function of X̃ for monodis-

perse CCA with N1=1000, R1=4a /8, and 
̃=0.0125. The
absorption spectrum has three maxima and two minima

which are considerably shifted from X̃=0. There is only one

maximum in the X̃�0 region, while there are two maxima

and two minima in the X̃
0 region. Apparently �a is not an

even function of X̃. The absorption is considerable in the

range −0.62
 X̃
0.62.
Now we consider a bidisperse CCA with N1 monomers of

radius R1=4a /8, N2 monomers of radius R2=2a /8, N=N1

+N2=1000, and 
̃=0.0125. Figure 5 shows �a for clusters
with various N2. We find that the increase in bidispersity has
a clear effect on the maximum of the normalized absorption

cross-section. For example, the rightmost peak of
�a / �4�kRe

3� increases from 3.67 to 5.15 as N2 increases from
zero to 4N /8. Moreover, the absorption bandwidth reduces
as bidispersity increases, e.g., the absorption is considerable

in the range −0.48
 X̃
0.45 when N2=6N /8. A closer in-

spection reveals that the peak in the X̃�0 region shifts more

towards X̃=0 as bidispersity increases. The shift of rightmost

peak from X̃=0.18 to 0.02, as N2 increases from 0 to 6N /8,

is indeed considerable. However, two peaks in the X̃
0 re-
gion have no considerable shift.

As another example, we consider a bidisperse CCA with

N1=7N /8, N2=N /8, R1=4a /8, and 
̃=0.0125. Figure 6
shows �a for various R2. As expected, the absorption spec-
trum of these clusters are not much different from the spec-
trum of monodisperse cluster. As the population N2 in-
creases, the spectrum dependence on the radius R2 becomes
clear. Figure 7 shows �a for a bidisperse CCA with N1=N2

=N /2, R1=4a /8, and 
̃=0.0125. We find that the central and
rightmost peaks of �a / �4�kRe

3� increase as R2 decreases. The

rightmost peak shifts towards X̃=0 as R2 decreases. For ex-

ample, the right peak shifts from X̃=0.18 to 0.03 as R2
=4a /8 decreases to R2=a /8. Here again the absorption
bandwidth reduces as bidispersity increases.
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FIG. 3. �Color online� �a �in units of 4�kRe
3� as a function of
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To go beyond the bidisperse CCA, we consider a uniform
distribution of monomer radius in the interval �Rmin,Rmax
=4a /8�. Figure 8 shows �a for various Rmin. We find that the
polydispersity has a deep influence on the absorption spec-
trum. The absorption spectrum of a monodisperse CCA
shows three maxima and two minima. But even for Rmin
=3a /8, the spectrum has two maxima and one minimum. For
Rmin=2a /8 and a /8, the spectrum has one maximum and no

minimum. The rightmost peak shifts towards X̃=0 as poly-
dispersity increases. The absorption spectrum is not an even

function of X̃. The absorption bandwidth reduces as polydis-
persity increases. Moreover, the peak of �a / �4�kRe

3� in-
creases as monomer size dispersion grows.

V. SUMMARY

A dimer composed of one sphere of radius R1 and one
sphere of radius R2, is the simplest polydisperse cluster.
Quite remarkably, certain absorption resonances of the dimer
disappear as R1→R2. In a rough approximation, a cluster can
be viewed as an aggregate of dimers. This immediately sug-
gests that the monomer size dispersion leaves fingerprint on
the absorption spectrum of cluster. We prove this point for
two important class of clusters: the RGP and the CCA.

The absorption spectra of monodisperse RGP and CCA
are obviously different, see Figs. 1�a� and 1�b�. The optical
properties of fractal aggregates are due to the localiza-
tion of optical eigenmodes, and associated strong field
fluctuations.1–4 We find that the effects of monomer size �po-

larizability� dispersion on the spectrum of nonfractal and
fractal clusters are quite distinct.

In the case of nonfractal RGP, size dispersion does not
change the overall bell shape of the spectrum. Almost inde-
pendently of the size dispersion, �a is nearly symmetric and

gains its maximum at X̃=0. The peak of �a / �4�kRe
3� has a

weak dependence on the monomer size dispersion, see Figs.
2–4.

In the case of fractal CCA, the bandwidth of the absorp-
tion spectrum clearly decreases as the size dispersion in-
creases. Moreover, the maxima and minima of the spectrum
vary, shift, and even disappear, as the size dispersion in-
creases, see Figs. 5–8.

Our work can be extended in many directions: to over-
come the limitations of the coupled-dipole equations, one
can follow the coupled-multiple method developed in Ref.
19. Nonlinear optical properties of polydisperse fractal ag-
gregates are of immediate interest. We have assumed that all
the monomers have the same dielectric constant �. In a more
complicated model, the ith monomer is characterized by its
radius Ri and dielectric constant �i. For example, consider a
fractal aggregate composed of N1 particles of type 1 �with
dielectric constant �1 and radius R1� and let N2 particles of
type 2 �with dielectric constant �2 and radius R2� to attach it.
The maxima, minima, and bandwidth of the absorption spec-
trum depend on N2. This provides a mechanism for detecting
particles of importance. This small sensor has potential ap-
plications in identification of hazardous molecules, infectious
viruses, etc.
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